RM新时代

    <dl id="aepsh"><sub id="aepsh"><ruby id="aepsh"></ruby></sub></dl>

    <kbd id="aepsh"></kbd><dl id="aepsh"><meter id="aepsh"><rt id="aepsh"></rt></meter></dl>
    <samp id="aepsh"></samp><kbd id="aepsh"></kbd>
    <delect id="aepsh"></delect>
  1. 安詩(shī)曼工業(yè)除濕機廠(chǎng)家專(zhuān)業(yè)生產(chǎn)工業(yè)除濕機,家用除濕機,商用除濕機等產(chǎn)品,歡迎來(lái)電咨詢(xún)定制。 公司簡(jiǎn)介 | 研發(fā)團隊 | 網(wǎng)站地圖 | xml地圖
    安詩(shī)曼-精芯除濕·致凈生活環(huán)境溫度濕度系統化解決方案供應商
    全國咨詢(xún)熱線(xiàn):133-6050-3273
    您的位置:新聞資訊 > 常見(jiàn)問(wèn)題 > 再生式除濕換熱器除濕的研究現狀及存在的問(wèn)題

    再生式除濕換熱器除濕的研究現狀及存在的問(wèn)題

    作者:CEO 時(shí)間:2022-09-07

    信息摘要:目前常用的干燥劑除濕技術(shù)主要包括固體除濕和液體除濕。固體除濕是利用多孔介質(zhì)的毛細作用將空氣中的水分吸附到干燥劑上,目前國內外主要研究?jì)深?lèi)固體吸附式除濕裝置:一類(lèi)是固定床式除濕器,包括交叉冷卻式除濕器;另一類(lèi)是旋轉式除濕器,包括平行通道式除濕轉輪和蜂窩狀除濕轉輪。液體干燥劑除濕以具有吸濕性能的鹽溶液(如溴化鋰、氯化鋰、氯化鈣等)作為工作介

    再生式除濕換熱器除濕的研究現狀及存在的問(wèn)題

    再生式除濕換熱器除濕的研究現狀及存在的問(wèn)題

      目前常用的干燥劑除濕技術(shù)主要包括固體除濕和液體除濕。固體除濕是利用多孔介質(zhì)的毛細作用將空氣中的水分吸附到干燥劑上,目前國內外主要研究?jì)深?lèi)固體吸附式除濕裝置:一類(lèi)是固定床式除濕器,包括交叉冷卻式除濕器;另一類(lèi)是旋轉式除濕器,包括平行通道式除濕轉輪和蜂窩狀除濕轉輪。液體干燥劑除濕以具有吸濕性能的鹽溶液(如溴化鋰、氯化鋰、氯化鈣等)作為工作介質(zhì),常溫情況下一定濃度的溶液其表面蒸汽壓低于空氣中的水蒸汽分壓力,實(shí)現水分由空氣向溶液轉移來(lái)達到除濕目的。

      相對于傳統的冷卻除濕技術(shù),固體干燥劑除濕設備簡(jiǎn)單,在低濕下仍能有良好的除濕效果,在潛熱負荷大于顯熱負荷的地區很實(shí)用;還能夠將空氣處理到較低的露點(diǎn),而且將干燥劑除濕技術(shù)與冷盤(pán)管結合起來(lái)可以實(shí)現溫濕度單獨控制,耗電少,再生熱選擇面廣,能夠利用太陽(yáng)能、廢熱等低品位熱能;此外,沒(méi)有氟利昂的排放,環(huán)境友好型,干燥劑還能除去空氣中污染物而能保證室內空氣品質(zhì)。

      最原始的固體除濕是在密封的容器內放置干燥劑進(jìn)行除濕,如將干燥劑置于食品袋和將臭丸放在衣柜里等。后來(lái)出現了將固體吸附劑(如硅膠、分子篩、活性氧化鋁、沸石等)作為固定層填充于塔(筒)內進(jìn)行空氣除濕,該除濕方式為間歇方式,需要定期進(jìn)行脫附處理,而且無(wú)論是操作還是控制都不方便。與此同時(shí)出現了流化床除濕器,但是其動(dòng)力消耗較大。為了能連續除濕,出現了兩塔并用的除濕器:一塔用于吸附空氣水分,另一塔用于再生,經(jīng)過(guò)一定時(shí)間后將塔轉換,使吸濕與再生互換,如此可連續除濕。最初的兩塔并用除濕都是在常壓下進(jìn)行,脫附采用的是熱脫附。為了進(jìn)一步提高除濕的效率和降低脫附所需能量,出現了非加熱再生的變壓吸附除濕器。

      S.Singh等床的系統性能與運行參數、工況等有關(guān)。對多層式除濕器干燥劑的再生做了研究,分析了參數如再生空氣溫度(42℃-72℃)、經(jīng)過(guò)固定床的空氣流速(0.175-0.55m/s)和除濕器層數(2~4)對干燥劑再生時(shí)間的影響,得到再生時(shí)間隨著(zhù)暫停時(shí)間的增加而減少。在所研究的固定床空氣流速和層數范圍內,干燥劑的水分減少比例隨著(zhù)再生溫度的增加從42.8%下降到15%.此外,在空氣流速為0.175m/s和再生溫度為52℃時(shí)的所需的能耗最小。馮圣洪等人對硅膠固定式吸附床的不同形狀的通道結構進(jìn)行了實(shí)驗研究,其中包括:直通道、彎曲通道、螺旋通道。研究得到,螺旋通道在相同流速的條件下吸附/解吸效果而且再生速率高,有潛在的研究?jì)r(jià)值。該固定床除濕方式為間歇方式,需要定期進(jìn)行再生處理,而且無(wú)論是操作還是控制都不方便。

      由于最初的固定床除濕器只有處理空氣通道,沒(méi)有冷卻氣流通道,床的兩面均有干燥劑,這就會(huì )有吸附熱易積累、難排放而引起床層溫度升高導致除濕效率降低的缺點(diǎn),后逐漸被具有冷卻氣流通道的床層所取代。具有惰性填充物的冷卻床的惰性填充物和冷氣流可以同時(shí)帶走吸附熱,從而降低了床層的溫度,提高了除濕效率也提高系統的熱力性能。后來(lái)又出現了具有冷卻氣流通道的錯流床層結構。

      一種新型內冷卻緊湊式固體干燥劑除濕器,并建立了數學(xué)模型,采用數值模擬的方法對該除濕器進(jìn)行了再生和除濕周期性切換的性能動(dòng)態(tài)模,該除濕器通過(guò)在次邊通以氣流對主邊流道進(jìn)行冷卻,能夠有效帶走吸濕過(guò)程產(chǎn)生的吸附熱。提出了交叉冷卻式固定床,該固定床具有交叉式平行冷卻管道,冷卻管道交叉地布置在每個(gè)除濕管道中,管道內通過(guò)冷水或冷空氣,在吸附的過(guò)程中冷卻干燥劑。

      對叉流式除濕器性能進(jìn)行了分析研究,發(fā)現該叉流式除濕換熱器的COP要比單獨使用除濕機時(shí)高出53%,達到1.2,而所需的蒸發(fā)溫度也從單獨的除濕機時(shí)的11.5℃提高到要高19.3℃。此類(lèi)除濕器進(jìn)一步提高了床層的除濕效率。

      為了保證能連續除濕,又出現了轉輪除濕機。轉輪除濕之所以備受青睞,是由于其可連續運轉,濕度控制容易,依轉盤(pán)直徑大小可制成各種不同風(fēng)量的機型,維護容易而且可以充分利用工業(yè)余熱、廢熱、天然氣、太陽(yáng)能等低品位熱能,能迅速、簡(jiǎn)便有效地降低空氣中的濕度,卓有成效地解決常溫低濕、低溫低濕等用其他制冷方法無(wú)法解決的除濕問(wèn)題,特別是配套組合處理后空氣露點(diǎn)可達到-40℃~-60℃。

      但固體轉輪除濕機結構復雜,而且除濕過(guò)程流體溫升較大,一般為30℃;轉輪旋轉結構容易出現漏風(fēng)現象,特別是氯化鋰除濕轉輪轉盤(pán)具有容易出現過(guò)飽和現象而致使吸濕劑流出,或吸水不平衡致使轉盤(pán)轉動(dòng)時(shí)產(chǎn)生擺動(dòng)的缺點(diǎn);分子篩轉輪除濕機不僅價(jià)格較硅膠貴,而且要求轉輪再生空氣溫度高。

      為了研究吸附熱導致除濕過(guò)程偏離理想等溫除濕而影響除濕性能的問(wèn)題。葛天舒等提出了理想的轉輪式無(wú)限多級除濕空調的概念,其處理過(guò)程如圖1-2所示,理論上證明此理想流程具有最小的不可逆損失、系統的驅動(dòng)熱源溫度而且系統的除濕量,闡明實(shí)現該過(guò)程對于解決吸附熱對除濕性能影響具有重要作用。

      轉輪的系統性能與參數如再生風(fēng)速、處理風(fēng)速、轉輪轉速、再生溫度以及再生風(fēng)和處理風(fēng)的工況等有關(guān)。如何優(yōu)化這些參數也成了眾多研究者研究熱點(diǎn)。用數值模擬的方法在再生溫度50℃-150℃的圍內對轉輪轉速和面積比(Ar/Ap)進(jìn)行了研究,并研究了這些參數對等溫線(xiàn)依賴(lài)性。此外,干燥劑除濕主要技術(shù)核心在于干燥劑材料的選擇。目前對干燥劑材料的研究十分活躍,研究方向主要是尋找接近理想吸附性能的吸附劑材料,其中在原有多孔吸附劑中添加其它成分形成高性能的復合吸附劑也是研究人員努力的方向。

      對硅膠-氯化鋰復合干燥劑強化吸濕機理及其應用進(jìn)行了研究,研制出復合干燥劑并解決了復合干燥劑的液解問(wèn)題。實(shí)驗結果表明復合干燥劑轉輪的除濕量比硅膠轉輪平均要高50%。尤其在相對濕度較低時(shí),除濕量更高;轉速、再生溫度和處理空氣進(jìn)口相對濕度對除濕轉輪的性能影響比較顯著(zhù)。

      針對傳統的加熱再生方法不僅能耗大,而且能量損失嚴重,從而限制了一些吸濕性能高、經(jīng)濟性好的固體除濕劑(如硅膠)在除濕空調系統中應用的問(wèn)題,姚曄提出一種超聲波再生技術(shù),從理論上探討固體除濕劑超聲波再生的可行性,并進(jìn)行實(shí)驗驗證.結果表明,利用超聲波進(jìn)行固體除濕劑再生是完全可行的.超聲波再生有望降低固體除濕劑的再生溫度。

      為了避免單獨的除濕系統的弊端,復合系統也成為研究的一個(gè)方向。復合系統結合了吸附劑除濕器與傳統的冷卻系統,這樣除濕裝置用來(lái)處理濕空氣的潛熱,傳統的冷卻系統處理空氣的顯熱。因此,復合系統可以實(shí)現對空氣的溫度和濕度單獨控制,同時(shí)具有節能、體積小等特點(diǎn)。但是復合系統的搭建過(guò)程相對復雜,初投資比較大。與R407C壓縮式空調系統相結合的固定床除濕系統。實(shí)驗研究了再生溫度、干燥劑質(zhì)量、空氣質(zhì)量流速、除濕床中抽屜數量及其尺寸對系統COP的影響,結果表明與固體除濕的結合的空調復合系統的壓縮機耗電量減少了10.2%。

      比較了許多以天然氣為燃料的內燃機驅動(dòng)的轉輪熱泵系統的經(jīng)濟性。內燃機的廢熱用于提供一部分再生轉輪所需要的能量。選取了美國的8個(gè)城市,其氣候特點(diǎn)包括高溫高濕、高溫干燥以及溫濕度適中的,數學(xué)模型的結果表明在所有的這些條件下,這些系統的運行成本都低于電驅動(dòng)的熱泵系統。提出了聯(lián)合發(fā)電冷卻循環(huán),在這個(gè)循環(huán)中利用太陽(yáng)能驅動(dòng)的Rankine循環(huán)產(chǎn)生電能,同時(shí)系統中利用冷卻器產(chǎn)生的熱量進(jìn)行轉輪的再生。將此系統用于一個(gè)代表性的建筑中,結果表明比起傳統的HVAC系統,此新系統的能量消耗減小了12%。由干燥單元和燃氣驅動(dòng)冷卻器組成的復合系統。干燥單元由再生除濕器、換熱器、蒸發(fā)冷卻器、熱管和風(fēng)機組成,干燥單元提供全部的潛熱和部分顯熱。冷卻器提供剩余的顯熱。

      發(fā)現系統的能量消耗可以減半,平均回收期在兩年左右。這就說(shuō)明一旦此系統中的干燥單元在商業(yè)上容易獲得,這種系統與傳統的系統相比將會(huì )有明顯的競爭性。研究了一個(gè)干燥除濕子系統與蒸氣壓縮系統相結合的復合系統的性能。系統中利用平行通道的除濕轉輪。結果表明,增加了附加的除濕子系統,燃氣COP提高了40%同時(shí)制冷量提高了50%。

      一種新型的干燥制冷方式,系統被稱(chēng)為DESRAD系統,系統采取被動(dòng)的冷卻方式。在熱濕季節,利用固定在屋頂上的干燥吸附床提供所需要的潛熱和顯熱。白天,利用家用材料存儲濕度和熱量的能力處理室內空氣,傳統空調系統作為備用設備。干燥劑吸附床用于在夜間對室內的空氣進(jìn)行除濕處理。

      干燥劑除濕器的傳熱和傳質(zhì)過(guò)程是相互耦合的,傳熱和傳質(zhì)相互交織,相互影響。對濕空氣而言,熱對流、熱傳導和質(zhì)量對流、分子擴散同時(shí)存在,相互影響;對干燥劑而言,目前尚缺乏在多孔介質(zhì)中分子擴散的一些物性數據。而干燥劑材料對濕空氣中對水蒸汽的吸附本身就是一個(gè)非平衡的動(dòng)態(tài)吸附過(guò)程,在不同的溫濕度、壓力和空氣流速下,干燥劑材料具有不同的平衡吸附量和動(dòng)態(tài)吸附力;目前在理論上也尚無(wú)統一的動(dòng)態(tài)的以及平衡的吸附方程,在實(shí)驗上尚缺乏干燥劑材料在一些工況下的動(dòng)態(tài)吸附數據或實(shí)驗關(guān)聯(lián)式。

      D.Charoensupaya等(1988)利用一個(gè)假設的等溫吸附方程建立了一維的傳熱傳質(zhì)模型,對干燥除濕系統進(jìn)行了參數分析。R.K.Collier等(1991)通過(guò)對除濕轉輪傳熱傳質(zhì)過(guò)程中“熱波”和“濃度波”的分析,指出為使系統的整體性能******應該進(jìn)行“分級再生”,同時(shí)增加轉輪中的惰性熱容。J.Y.San(1993)對交叉流除濕裝置的傳熱傳質(zhì)過(guò)程建立了二維的數學(xué)模型,分析了傳熱單元數NTU、畢渥數Bi等因素對系統性能的影響。W.Zheng等(1993,1995)用隱式的有限差分方法對除濕轉輪的一維的傳熱傳質(zhì)過(guò)程進(jìn)行了數值模擬,分析了轉輪轉速等因素對系統性能的影響。P.Majumdar(1998)對復合干燥劑孔隙結構內的傳熱傳質(zhì)進(jìn)行了研究,該模型綜合考慮了氣側熱阻和固側熱阻對傳熱傳質(zhì)的影響。

      G.R.Thorpe(1998)用數值方法詳細分析了用于谷物干燥的硅膠堆積床的傳熱傳質(zhì)過(guò)程,該模型應用Newton-Raphson方法對硅膠表面空氣的含濕量Yw進(jìn)行迭代求解。Y.J.Dai等(2001)通過(guò)數值計算用參數分析的方法對除濕轉輪的性能進(jìn)行了詳細的分析和討論。J.L.Niu等(2002)通過(guò)對一個(gè)二維數學(xué)模型的數值求解,討論了干燥劑厚度對除濕轉輪傳熱傳質(zhì)的影響,指出對于干燥劑而言在某一轉速下只有一定厚度的活性層才參加傳熱傳質(zhì)活動(dòng)。劉曉茹等通過(guò)二維動(dòng)態(tài)數學(xué)模型分析內冷卻緊湊式除濕器傳熱傳質(zhì)過(guò)程,計算時(shí)采用全隱式有限差分格式對方程組進(jìn)行離散,對流項采用一階迎風(fēng)格式并利用牛頓迭代法求取各種所需參數的數值解。

      概括來(lái)說(shuō),目前大量的研究主要集中于如何提高干燥劑除濕系統的熱力性能系數COP和除濕性能方面。事實(shí)上,吸附熱是制約系統性能的主要因素之一,除濕空調系統在動(dòng)態(tài)除濕時(shí),由于吸附熱的釋放使除濕劑的溫度升高而大大降低吸濕能力,很難實(shí)現理想的等溫除濕過(guò)程,導致整個(gè)傳熱傳質(zhì)過(guò)程的不可逆損失較大,驅動(dòng)系統的再生溫度較高。

      雖然研究者對解決吸附熱問(wèn)題做了較多的研究和提出一些辦法,但是到目前為止,吸附熱問(wèn)題仍未得到很好的解決,本文就以此問(wèn)題作為主要的研討對象,旨在通過(guò)大量研究找到行之有效的解決辦法。

      

    聲明:本站部分內容和圖片來(lái)源于互聯(lián)網(wǎng),經(jīng)本站整理和編輯,版權歸原作者所有,本站轉載出于傳遞更多信息、交流和學(xué)習之目的,不做商用不擁有所有權,不承擔相關(guān)法律責任。若有來(lái)源標注存在錯誤或侵犯到您的權益,煩請告知網(wǎng)站管理員,將于第一時(shí)間整改處理。管理員郵箱:y569#qq.com(#轉@)
    本文標簽:除濕
    在線(xiàn)客服
    聯(lián)系方式

    熱線(xiàn)電話(huà)

    133-6050-3273

    上班時(shí)間

    周一到周六

    公司電話(huà)

    133-6050-3273

    二維碼
    線(xiàn)
    RM新时代

      <dl id="aepsh"><sub id="aepsh"><ruby id="aepsh"></ruby></sub></dl>

      <kbd id="aepsh"></kbd><dl id="aepsh"><meter id="aepsh"><rt id="aepsh"></rt></meter></dl>
      <samp id="aepsh"></samp><kbd id="aepsh"></kbd>
      <delect id="aepsh"></delect>
      1. <dl id="aepsh"><sub id="aepsh"><ruby id="aepsh"></ruby></sub></dl>

        <kbd id="aepsh"></kbd><dl id="aepsh"><meter id="aepsh"><rt id="aepsh"></rt></meter></dl>
        <samp id="aepsh"></samp><kbd id="aepsh"></kbd>
        <delect id="aepsh"></delect>
      2. rm新时代足球交易平台 rm新时代app打不开 RM新时代|首入球时间 rm新世界 rm新时代靠谱吗 rm新时代体育平台 rm新时代赚钱吗是真的吗 RM新时代是正规平台吗 RM新时代投资官网|首入球时间 新时代RM娱乐app软件